An investigation of speech enhancement using wavelet filtering method, International Journal of Speech Technology

نویسندگان

  • Khaled Daqrouq
  • Ibrahim Abu Sbeih
  • Omer Daoud
  • Emad Khalaf
چکیده

This paper investigates the utilization of wavelet filters via multistage convolution by Reverse Biorthogonal Wavelets (RBW) in high and low pass band frequency parts of speech signal. Speech signal is decomposed into two pass bands of frequency; high and low, and then the noise is removed in each band individually in different stages via wavelet filters. This approach provides better outcomes because it does not cut the speech information, which occurs when utilizing conventional thresholding. We tested the proposed method via several noise probability distribution functions. Subjective evaluation is engaged in conjunction with objective evaluation to accomplish optimal investigation method. The method is simple but has surprise high quality results. The method shows superiority over Donoho and Johnstone thresholding method and Birge-Massart thresholding strategy method

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Khaled Daqrouq, Ibrahim Abu Sbeih, Omer Daoud, Emad Khalaf, An investigation of speech enhancement using wavelet filtering method, International Journal of Speech Technology (Springer), 2010, Volume 13, Number 2, Pages 101-1152010

This paper investigates the utilization of wavelet filters via multistage convolution by Reverse Biorthogonal Wavelets (RBW) in high and low pass band frequency parts of speech signal. Speech signal is decomposed into two pass bands of frequency; high and low, and then the noise is removed in each band individually in different stages via wavelet filters. This approach provides better outcomes ...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty

In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE  estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of  noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

A New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement

In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the  combination of  the  conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016